1 ๋ถ„ ์†Œ์š”

๐Ÿค– ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP) ํ•™์Šต ์ผ์ง€ - Day 1

๐Ÿ“š ์˜ค๋Š˜์˜ ํ•™์Šต ๋‚ด์šฉ

  1. ๊ฐ์ • ๋ถ„์„ (Sentiment Analysis)
  2. ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ (Word Embedding)
  3. BERT๋ฅผ ์ด์šฉํ•œ ๋ฌธ์žฅ ์œ ์‚ฌ๋„ ๋ถ„์„
  4. IMDB ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•œ ๊ฐ์ • ๋ถ„์„ ๋ชจ๋ธ ํ•™์Šต

1๏ธโƒฃ ๊ฐ์ • ๋ถ„์„ ์‹ค์Šต

๐ŸŽฏ ๋ชฉํ‘œ

  • Hugging Face์˜ Transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ…์ŠคํŠธ์˜ ๊ฐ์ •์„ ๋ถ„์„
  • ๊ธฐ๋ณธ ๋ชจ๋ธ๊ณผ RoBERTa ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ๋น„๊ต

๐Ÿ“ ์ฝ”๋“œ ๋ฐ ์„ค๋ช…

from transformers import pipeline

# ๊ธฐ๋ณธ ๊ฐ์ • ๋ถ„์„
sentiment_analysis = pipeline("sentiment-analysis")
result = sentiment_analysis("I hate using Hugging Face!")

# RoBERTa ๊ธฐ๋ฐ˜ ๊ฐ์ • ๋ถ„์„
classifier = pipeline("sentiment-analysis", model="roberta-base")
result = classifier("This product is amazing!")

๐Ÿ’ก ์•Œ์•„๋‘๋ฉด ์ข‹์€ ์ 

  • pipeline์€ ์†์‰ฝ๊ฒŒ NLP ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๋Š” ๋„๊ตฌ
  • RoBERTa๋Š” BERT๋ฅผ ๊ฐœ์„ ํ•œ ๋ชจ๋ธ

2๏ธโƒฃ ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ ์‹ค์Šต

๐ŸŽฏ ๋ชฉํ‘œ

Word2Vec์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹จ์–ด ๊ฐ„์˜ ๊ด€๊ณ„์„ฑ ํŒŒ์•…

๐Ÿ“Š ์‹ค์Šต ๊ตฌ์กฐ

graph LR
    A[๋ฌธ์žฅ ์ž…๋ ฅ] --> B[์ „์ฒ˜๋ฆฌ]
    B --> C[Word2Vec ๋ชจ๋ธ]
    C --> D[๋‹จ์–ด ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ]

๐Ÿ“ ์ฃผ์š” ์ฝ”๋“œ

from gensim.models import Word2Vec

model = Word2Vec(sentences=processed, 
                vector_size=5,
                window=5,
                min_count=1, 
                sg=0)

๐Ÿ” ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค๋ช…

  • vector_size: ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ ์ฐจ์›
  • window: ๋ฌธ๋งฅ ์œˆ๋„์šฐ ํฌ๊ธฐ
  • min_count: ์ตœ์†Œ ๋‹จ์–ด ๋“ฑ์žฅ ํšŸ์ˆ˜
  • sg: ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํƒ (0: CBOW, 1: Skip-gram)

3๏ธโƒฃ BERT ๋ฌธ์žฅ ์ž„๋ฒ ๋”ฉ

๐ŸŽฏ ๋ชฉํ‘œ

BERT๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์žฅ ๊ฐ„ ์œ ์‚ฌ๋„ ์ธก์ •

๐Ÿ”„ ์ฒ˜๋ฆฌ ๊ณผ์ •

  1. BERT ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
  2. ๋ฌธ์žฅ ํ† ํฐํ™”
  3. ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
  4. ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ

๐Ÿ“Š ์‹œ๊ฐํ™”

graph TD
    A[๋ฌธ์žฅ ์ž…๋ ฅ] --> B[ํ† ํฐํ™”]
    B --> C[BERT ๋ชจ๋ธ]
    C --> D[์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ]
    D --> E[์œ ์‚ฌ๋„ ๊ณ„์‚ฐ]

4๏ธโƒฃ IMDB ๋ฆฌ๋ทฐ ๊ฐ์ • ๋ถ„์„

๐ŸŽฏ ๋ชฉํ‘œ

BERT๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์˜ํ™” ๋ฆฌ๋ทฐ ๊ฐ์ • ๋ถ„์„ ๋ชจ๋ธ ํ•™์Šต

๐Ÿ“ˆ ํ•™์Šต ๊ณผ์ •

  1. ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ
  2. BERT ๋ชจ๋ธ ์„ค์ •
  3. ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •
  4. ๋ชจ๋ธ ํ•™์Šต ๋ฐ ํ‰๊ฐ€

โš™๏ธ ์ฃผ์š” ์„ค์ •

training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    evaluation_strategy="epoch"
)

๐Ÿ“Œ ์˜ค๋Š˜์˜ ํ•ต์‹ฌ ํฌ์ธํŠธ

  1. ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋“ค์˜ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ
  2. ๋‹จ์–ด/๋ฌธ์žฅ ์ž„๋ฒ ๋”ฉ์˜ ์ค‘์š”์„ฑ
  3. ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ์˜ ํ™œ์šฉ ๋ฐฉ๋ฒ•

๐Ÿ”œ ๋‹ค์Œ ํ•™์Šต ๊ณ„ํš

  • ๋‹ค์–‘ํ•œ ์–ธ์–ด์— ๋Œ€ํ•œ ๊ฐ์ • ๋ถ„์„
  • ๋ชจ๋ธ ์„ฑ๋Šฅ ์ตœ์ ํ™”
  • ์ปค์Šคํ…€ ๋ฐ์ดํ„ฐ์…‹ ํ™œ์šฉ

๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ

#NLP #MachineLearning #BERT #Python #DeepLearning

ํƒœ๊ทธ: ,

์นดํ…Œ๊ณ ๋ฆฌ:

์—…๋ฐ์ดํŠธ:

๋Œ“๊ธ€๋‚จ๊ธฐ๊ธฐ